Modeling the Relative GHG Emissions of Conventional and Shale Gas Production

نویسندگان

  • Trevor Stephenson
  • Jose Eduardo Valle
  • Xavier Riera-Palou
چکیده

Recent reports show growing reserves of unconventional gas are available and that there is an appetite from policy makers, industry, and others to better understand the GHG impact of exploiting reserves such as shale gas. There is little publicly available data comparing unconventional and conventional gas production. Existing studies rely on national inventories, but it is not generally possible to separate emissions from unconventional and conventional sources within these totals. Even if unconventional and conventional sites had been listed separately, it would not be possible to eliminate site-specific factors to compare gas production methods on an equal footing. To address this difficulty, the emissions of gas production have instead been modeled. In this way, parameters common to both methods of production can be held constant, while allowing those parameters which differentiate unconventional gas and conventional gas production to vary. The results are placed into the context of power generation, to give a ″well-to-wire″ (WtW) intensity. It was estimated that shale gas typically has a WtW emissions intensity about 1.8-2.4% higher than conventional gas, arising mainly from higher methane releases in well completion. Even using extreme assumptions, it was found that WtW emissions from shale gas need be no more than 15% higher than conventional gas if flaring or recovery measures are used. In all cases considered, the WtW emissions of shale gas powergen are significantly lower than those of coal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Life cycle greenhouse gas emissions of Marcellus shale gas

This study estimates the life cycle greenhouse gas (GHG) emissions from the production of Marcellus shale natural gas and compares its emissions with national average US natural gas emissions produced in the year 2008, prior to any significant Marcellus shale development. We estimate that the development and completion of a typical Marcellus shale well results in roughly 5500 t of carbon dioxid...

متن کامل

Examining the Impacts of Methane Leakage on Life-Cycle Greenhouse Gas Emissions of Shale and Conventional Natural Gas

conjunction with horizontal drilling. However, the environmental implications of NG production and its use have been called into question.1-4 One of the major concerns is the amount methane (CH4) leakage from production activities and its impact on the life-cycle greenhouse gas (GHG) emissions of NG. Examining the Impacts of Methane Leakage on Life-Cycle Greenhouse Gas Emissions of Shale and Co...

متن کامل

Modeling and Optimization of Energy Inputs and Greenhouse Gas Emissions for Eggplant Production Using Artificial Neural Network and Multi-Objective Genetic Algorithm

This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 ...

متن کامل

Modeling and Optimization of Energy Inputs and Greenhouse Gas Emissions for Eggplant Production Using Artificial Neural Network and Multi-Objective Genetic Algorithm

This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 ...

متن کامل

Implications of shale gas development for climate change.

Advances in technologies for extracting oil and gas from shale formations have dramatically increased U.S. production of natural gas. As production expands domestically and abroad, natural gas prices will be lower than without shale gas. Lower prices have two main effects: increasing overall energy consumption, and encouraging substitution away from sources such as coal, nuclear, renewables, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2011